
AFRL-IF-WP-TR-2003-1546

ASC3: ALGORITHMIC STRATEGIES
FOR COMPILER CONTROLLED
CACHES

Benjamin Goldberg

New York University
Courant Institute
251 Mercer Street
New York, NY 10012-2105

Krishna V. Palem

Georgia Institute of Technology

Michael O. Rabin

Harvard University

OCTOBER 2003

Final Report for 01 July 1999 – 30 November 2002

Approved for public release; distribution is unlimited.

STINFO FINAL REPORT

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN
THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT
DOES NOT IN ANY WAY OBLIGATE THE US GOVERNMENT. THE FACT THAT THE
GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR
OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR
CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE,
OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION
SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC,
INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

ANDREW W. HYATT, 2Lt, USAF
Program Monitor

ROBERT A. EHRET, Chief
Collaborative Simulation Technology & Applications Branch
Information Systems Division
Information Directorate

Do not return copies of this report unless contractual obligations or notice on a specific
document require its return.

roushrv
/s/

roushrv
/s/

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

October 2003 Final 07/01/1999 – 11/30/2002
5a. CONTRACT NUMBER

F33615-99-1-1499
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

ASC3: ALGORITHMIC STRATEGIES FOR COMPILER CONTROLLED
CACHES

5c. PROGRAM ELEMENT NUMBER
69199F

5d. PROJECT NUMBER

ARPI
5e. TASK NUMBER

FT

6. AUTHOR(S)

Benjamin Goldberg (New York University)
Krishna V. Palem (Georgia Institute of Technology)
Michael O. Rabin (Harvard University)

5f. WORK UNIT NUMBER

 09
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

New York University
Courant Institute
251 Mercer Street
New York, NY 10012-2105

Georgia Institute of Technology

Harvard University

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
ACRONYM(S)

AFRL/IFSD Information Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson AFB, OH 45433-7334

DARPA/IPTO
3701 Fairfax Drive
Arlington, VA 22203-1714

ONRRO Boston
495 Summer Street, Room 627
Boston, MA 02210-2109

11. SPONSORING/MONITORING AGENCY
REPORT NUMBER(S)

 AFRL-IF-WP-TR-2003-1546

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The ASC3 effort was a collaboration among research groups. The effort focused on strategies for improving the
performance of data-intensive and memory-bound programs through the innovation of algorithmic approaches in the
following areas: 1) The management of programmable memory hierarchies, 2) Data remapping and speculative
execution for improved cache performance, and 3) Compiler optimizations that are tolerant to memory aliasing. The
techniques developed by the ASC3 effort were applied to a number of data-intensive applications, including automatic
target recognition, database management, image matching, neural network simulation and scientific computation. The
strategies were validated using industry-strength simulation and emulation tools, based on the Trimaran EPIC Research
Infrastructure. The optimizations developed in the program exploited trends in microprocessor design and are applicable
to current platforms, emerging EPIC architectures, and future generations of COTS software. The ASC3 effort also
extended the functionality of the Trimaran Compiler EPIC infrastructure.

15. SUBJECT TERMS
Data Intensive Systems, Data mapping in Caches, management of programmable memory hierarchies

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 30
 2Lt Andrew W. Hyatt
19b. TELEPHONE NUMBER (Include Area Code)

(937) 904-9162
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

ASC3 : Algorithmic Strategies for
Compiler Controlled Caches

Abstract

The ASC3 effort within the Darpa Data Intensive Systems Program (DIS) was a
collaboration among research groups at the Georgia Institute of Technology, New York
University, and Harvard University. The effort focused on strategies for improving the
performance of data-intensive and memory-bound programs through the innovation of
algorithmic approaches in the following areas:

1. The management of programmable memory hierarchies,

2. Data remapping and speculative execution for improved cache performance,

3. Compiler optimizations that are tolerant to memory aliasing,

The techniques developed by the ASC3 effort were applied to a number of of data-
intensive applications, including automatic target recognition, database management,
image matching, neural network simulation and scientific computation. The strategies
were validated using industry-strength simulation and emulation tools, based on the
Trimaran EPIC Research Infrastructure. The optimizations developed in the program
exploited trends in microprocessor design and are applicable to current platforms,
emerging EPIC architectures, and future generations of COTS systems.

In addition, the ASC3 effort extended the functonality of the Trimaran Compiler
EPIC infrastructure to provide a more realistic experimental framework for validating
the algorithms developed in this program. In March of 2002, Tritanium – an Itanium-
specific version of Trimaran – was released to the research community.

roushrv
iii

ASC3 : Algorithmic Strategies for

Compiler Controlled Caches

Final Technical Report

Benjamin Goldberg

New York University

Krishna V. Palem

Georgia Institute of Technology

Michael O. Rabin

Harvard University

1 Introduction

The ASC3 effort within the Darpa Data Intensive Systems Program (DIS) was a collaboration

among research groups at the Georgia Institute of Technology, New York University, and

Harvard University. The effort was focused on strategies for improve the performance of data-

intensive and memory-bound programs through the innovation of algorithmic approaches in

the following areas:

1. The management of programmable memory hierarchies,

2. Data remapping and speculative execution for improved cache performance,

1

3. Compiler optimizations that are tolerant to memory aliasing,

The techniques developed by the ASC3 effort were applied to a number of of data-intensive

applications, including automatic target recognition, database management, image matching,

neural network simulation and scientific computation. The strategies were validated using

industry-strength simulation and emulation tools, based on the Trimaran EPIC Research In-

frastructure. The optimizations developed in the program exploited trends in microprocessor

design and are applicable to current platforms, emerging EPIC architectures and future gen-

erations of COTS systems. This report provides a summary of the results obtained in the

areas enumerated above, along with citations to full papers and technical reports providing

the details of the work.

In addition, the ASC3 effort extended the functonality of the Trimaran Compiler EPIC

infrastructure to provide a more realistic experimental framework for validating the tech-

niques described in this report in the context of EPIC architectures. In March of 2002,

Tritanium – an Itanium-specific version of Trimaran – was released to the research commu-

nity. The Tritanium system is the result of an ongoing collaboration between the ASC3 team

members, the National University of Singapore and George Washington University.

2 The management of programmable memory hierar-

chies

In this section, we describe several approaches that were used to improve performance via

the explicit management of the memory hierarchy through prefetching.

Data Prefetching is an important technique for addressing this growing problem, and is

the focus of this research. In this research, a new paradigm that utilizes extensive profiling

and powerful off-line learning algorithms to produce stochastic prediction models of hidden

memory access patterns is proposed. By adapting those prediction models to newly proposed

hardware and software-based prefetching schemes, we were able to overcome limitations of

2

current hardware or software-based data prefetching schemes which depending solely on

run-time information.

The main contributions of this research are:

• A novel framework to perform off-line trace analysis that permits a wide range of

learning algorithms to produce Markovian models to capture hidden memory access

patterns.

• Proposal of a prefetching micro-architecture that is low in hardware requirement and

overhead - Hardware-assisted prefetching mechanism.

• A software-based adaptation of this technique coupled with lightweight architectural

extensions ubiquitous to generic EPIC processors to eliminate the need for additional

hardware support.

Overall we were able to improve performances of conventional as well as irregular work-

loads from 11

3 Methodology

In the proposed framework, an off-line learning algorithm gathers a data access profile,

processes it at compile time, and builds a model of the memory access patterns (MAP) for an

application - this latter step shall be referred as cartography . The model is characterized by

a connected graph, where nodes in the graph are addresses and edges between nodes indicate

a transition from one address to the next. Using the memory profile, the probability of each

transition is computed and associated with the appropriate edge in the graph. Various

subsequent optimizations prune and compress the graph and glean necessary information to

select candidates for prefetching.

Unlike the related work in this area, the cartography (learning phase) of the proposed

optimization, as well as all subsequent decision making, are carried out at compile time. By

contrast, prior related work performs similar tasks at run-time, and is thus restricted by the

3

available resources of the machine and hence limited in scope. The methodology proposed

here provides a larger opportunity for program analysis, affords better decisions, and thus

helps deliver the promise of Moore’s Law to the end user.

We begin with the collection of load miss traces for a program. This is trivially achieved

by augmenting a cache simulator to record the addresses that result in cache misses. Each

load miss trace is a sequence of ¡lxi , xi¿ pairs, where lxi is the uniqueoperation identifier

in the program, and xi is the memory address, fetched by l, which resulted in a cache

miss at a particular level of the memory hierarchy. Recent studies have shown that only

a small number of load instructions - the delinquent loads - are responsible for the bulk

of the cache misses. Hence, the analysis only gathers information for a few operations as

explained further when newly proposed hardware-assisted prefetching scheme is described

in Chapter 3. Each basic block that contains a delinquent load is known as a hot spot and

is a candidate for further analysis. A sequence of delinquent load operations will be the

focus of newly proposed hardware-assisted and compiler directed software-based prefetching

algorithm in this research as further explained in the following paragraphs.

After certain hot spots are identified by above procedure (hot spot filtering), a sequence

of delinquent load operations for each hot spot in the target applications is fed into learning

module to produce a Markov model for each hot spot. The Markov model is a probability-

based automaton where each state corresponds to a memory address, and the state tran-

sitions realize a sequence of addresses. Furthermore, the automaton is annotated with the

likelihood of occurrence of any given transition. Once built, this Markov model as shown in

Chapter 3 generates a prediction model for each hotspot. Past studies have shown that in

any address trace, there is a high probability that the current address is related or deter-

mined by past addresses. Furthermore, this phenomena is fairly stable in most applications,

and is generally not sensitive to variations of the input workload. These properties make

off-line Markovian-based cartography a suitable tool for extracting memory access patterns

- which subsequently serve as a guide to data prefetching.

Once each prediction model per hotspot is created, it will be used for inserting dynamic

4

prefetch requests by prefetch engine for proposed hardware-assisted prefetching scheme or by

the compiler to insert predicated prefetch operations for proposed software-based prefetching

scheme (figure 1)

4 Hardware-assisted data prefetching

Hardware-based predictors operate in two phases - a learning phase and a prediction phase.

In the learning phase, the prediction facility is trained. Typically, this involves the updating

of a prediction table or automaton. In the prediction phase, the learned table or automaton

is used to make prefetch requests. In some schemes, during the prediction phase, the pre-

diction table or automaton may also be updated, i.e. the learning and prediction phases are

interleaved.

A major drawback of existing hardware-based schemes is the need to perform learning

and prediction both at run time. This severely limits the type and scope of learning schemes

that one can use. Also, this may necessitate a significant investment in hardware due to

complex logic, or there may be an impact on the critical path of instruction processing. In

the worst case, it can be both. Thus, overcoming this limitation by taking the learning phase

off-line is proposed in this research. In this chapter, it is shown that off-line learning not only

improves overall performance of our prediction model but also makes possible through simple

hardware logic for prediction engine since all the complex analysis and learning phase are

preprocessed by off-line software module. This in turn make possible to realize a proposed

prefetching scheme with much less extra hardware cost. We call our proposed scheme in this

section as hardware-assisted prefetching scheme to differentiate with traditional hardware-

based prefetching scheme since our proposed scheme has less hardware involvement in terms

of logic and cost. The hardware is just assisting to issue and effectively store prefetched

data what off-line software-learning module analyze and compute. We adopted Markovian

algorithm for the learning phase. For a certain load miss address x in hot spot, consider all

miss addresses within the specific window size w that immediately follows x and we call it a

5

Window Markov Predictor. More specifically, let y1, y2, , is the sequence of miss addresses

that follows x, we compute N’(x) = P(yi — x) — i w, x, yi T . The set N’ consists of

the miss addresses yi which followed the miss address x. The variable w corresponds to the

window size controlling the scope of the analysis.

Table 1 describes the average performance improvements of L1 & L2 prefetch over all

benchmarks (SPEC + Olden) tested by many optimizations. Baseline setup was 32K L1

cache and 256K L2 cache without any prefetching scheme. Second column(64K L1 cache)

shows the performance improvement when the size of L1 cache was increased 2 times from

32K to 64K bytes. Third column shows similar results when L1 cache size was tripled. RPT

stands for ”Reference Prediction Table” and it is one of traditional data prefetching scheme

originally designed by Chen and Baer. We tested 3 variations of Markov Predictor and

SMP(Simple Markov Predictor) is one using only next address after certain miss address.

WMP(Window Markov Predictor) is one I described above and window size was set to 5

in this experimentation. We also adopted Hidden Markovian algorithm to our purpose and

implemented and named as HMP(Hidden Markov Predictor) and those results are shown

in Table 1. Using proposed optimization techniques, we could reduce the stall cycles and

it directly leads to reduction in total execution cycles and achieving overall performance

improvements. As Table 1 shows, WMP outperforms the entire optimization scheme tested

in this experiments. The gap in memory and processor speed is increasing which eventually

results in larger miss penalties, which in turn promises even larger performance improvements

in the future systems.

4.1 Adaptive Compiler Directed Prefetching for EPIC Processors

After hardware-assisted prefetching scheme explained in section 3 was implemented and

tested, we noticed the effectiveness of its framework and applied computational learning

methods. Even though, the cost of building proposed framework is far less than the one of

having bigger caches, we still need extra hardware involvement and naturally the next step

we focused on was how to minimize the extra hardware cost and build more flexible scheme

6

without sacrificing too much on performance improvement shown in the existing framework.

There has been increasing popularity of EPIC architectures (ex. Itanium from Intel)

which presents couple of novel architectural features which are exposed to the compiler, spec-

ulation and predication. Based on those features, we could propose software-based prefetch-

ing scheme, which lightly extends existing EPIC architecture (ISA extensions). We imple-

mented couple of new special purpose registers (MPR:Miss Predicate Register, MAR:Miss

Address Register) and new prefetch instruction. In our implementation, when a load opera-

tion misses primary cache, we set the MPR and enter the address causing the miss to MAR.

New predicated prefetch instructions, which are inserted by compiler, are

-prefetch0 addr if MPR -If MPR is set, non-binding load (prefetch) the address addr(MAR

+ -const)

Each prefetch instruction in the proposed scheme is also a (non-binding) speculative

data load. It is issued earlier than the control flow would normally allow and any resulting

exceptions are generally masked. The advantages over traditional software-based prefetching

scheme are the followings

• Low instruction overhead

• Adapts to run-time environments

• Avoids unnecessary bandwidth consumption and cache pollution

Table 2 shows Average performance improvement in several optimization schemes and

SMP(Software Markov Predictor) in the last column shows the result for the proposed

software-based prefetching scheme. The results reveals performance improvements due to

larger cache sizes are not significant enough when compared to the architectural investments

necessary to realize high capacity memory structures and proposed software prefetching

scheme(SMP) improved performance 14.8% - 64% improvement over traditional stride based

prefetching(RPT) alone.

7

5 Lessons Learned

By simply increasing L1 cache size alone did not help much in improving overall data cache

performance and this trend is more significant as application shows more irregular memory

access behavior. Thus we need new optimization technique for data intensive applications

and a new paradigm that utilizes extensive profiling and powerful off-line learning algorithms

which is proposed in this research shows noticeable performance benefits and it is expected to

show more promise in the future systems as the gap between processor and memory widens.

5.1 Cache Sensitive Instruction Scheduling

As part of the ASC3 effort, we designed and implemented a feedback-driven compiler-based

instruction scheduling algorithm to mask the long latencies of memory accesses. The algo-

rithm is named Cache Sensitive Scheduling (CSS). CSS is targetted towards VLIW instruc-

tion set architectures found in embedded systems as well as high-performance workstations.

These instruction set architectures (ISAs) support high degrees of instruction level paral-

lelism (ILP). A single VLIW instruction contains a set of operations that are executed in

parallel. These ISAs rely on the compiler to derive efficient instruction schedules; and as

result provide the compiler with information regarding the number and type of functional

units as well as the latencies of individual operations.

CSS is a localized instruction scheduler that benefits from the creation of large regions

of code containing no branches. This provides CSS with more opportunities to shuffle oper-

ations to mask the latencies of load operations. Examples of these regions are hyperblocks

and superblocks depending on how they are formed. Forming these regions requires the

ability to convert branches resulting from if-statements to sequences of operations with no

branches. Therefore, CSS requires ISAs to provide instruction predication, which is found

in many embedded processors (ARM and SHARC) as well as high-performance explicitly

parallel instruction computer (EPIC) workstations such as Itanium.

CSS is extends traditional compiler-based rank-function instruction scheduling tech-

8

niques, such as CPFS[3], that focus on maintaining the critical path and improving ILP

to mask the latency of delinquent load operations. CSS indirectly uses average latencies of

load operations which are gathered from light-profiling. This makes CSS sensitive to the

impact that a given load operation has on instruction schedule. CSS lessens or hides the

impact these delinquent loads while still maintaining a high degree of ILP.

When an instruction scheduler becomes more aware of the latencies of load instructions

and uses such information during scheduling, then we say it is a Load Sensitive Scheduler.

The algorithm we are presenting here, CSS, is a load-sensitive scheduler. The state-of-

art instruction schedulers today will treat all load operations as equals. Either the load

operations are assumed to always experience a cache hit latency (Optimistic Scheduler), or

the load operations are expected to experience a cache miss latency (Pessimistic Scheduler).

The example in figure 1 illustrates the problems with these approaches. As shown in part A,

the pessimistic scheduler chooses to schedule the load instructions with longer latencies that

resemble miss latencies. The result is that when data arrives early, the uses of that data are

unnecessarily delayed in beginning execution. As shown in part B, an optimistic scheduler

will choose to schedule the instruction earlier; however, if the data arrives in a later cycle

the processor will be stalled until the data arrives. This approach will shorten the schedule,

but increase the execution time. In addition, the optimistic scheduler is not concerned

with hiding latencies; and therefore, there are no gaps to insert other useful non-dependent

instructions.

Consider the example in figure 2. This example is based on code from an implementation

of matrix-multiplication. The original inner loop requires two floating point load operations,

one multiply operation, and one add operation. After loop-unrolling, it requires 5 times as

many operations. This scenario provides an opportunity for uncovering ILP in the schedule.

Due to the number of load operations, there are likely to be varying degrees of latencies and

some delinquent loads. Ideally, the loads producing cache misses should be scheduled earlier

in the iteration, while scheduling the operations that use the data later in the iteration. The

cycles in between can be used to schedule the other operations that do not depend on the

9

LDADDMULADD

LDSUBMULDIV

SUBMULDIV

SUBMULDIV

I1

I1

I2

I2

(A) Pessimistic

Unnecessary
Gap in Time

Time

(B) Optimistic

Time

Stall on Use

Data Arrives

Data Arrives

Figure 1: How conventional instruction schedulers handle load instructions

10

for k = 1 to N step 5

S1 += A[i][k]*B[k][j];

S1 += A[i][k+1]*B[k+1][j];

S1 += A[i][k+2]*B[k+2][j];

S1 += A[i][k+3]*B[k+3][j];

S1 += A[i][k+4]*B[k+4][j];

endfor

Figure 2: The above code is from the inner loop of a matrix-multiply implementation. The

inner loop has been unrolled by 5.

offending load operations. This reduces the effect of processor stalls related to dependent

operations attempting to access data that has not arrived. At the same time, this increases

the amount of ILP in the program. This is the essence of what CSS is designed to accom-

plish using a rank-based instruction scheduler framework. In other words, CSS uses realistic

latencies of operations to determine how much of a gap should be placed between the load

operation and the use of the data. The gap is tailored to the behavior of each load oper-

ation to provide the proper time for that particular load operation to load its data, while

minimizing the effects found in optimistic and pessimistic scheduling.

CSSrank(i) = α ∗ height(i) + β ∗

fanOut(i) + γ ∗

avgLatency(i) − δ ∗

predLatency(i)

(1)

The CSS rank function as shown in equation 1 refers to height(i), defined to be the

distance from i (in a flow graph) to the last instruction, and fanOut(i), defined to be the

number of instructions waiting for the result of i. It is these two properties of each instruction

that are used in current instruction schedulers such as CPFS. However, the CSS function

has other components, mainly avgLatency(i) and predLatency(i). Our unique contribution

11

is these two components and the way in which they are incorporated. Our unique handling

of these components gives us the ability to balance ILP gains with the ill-effects of poor

memory utilization.

1. avgLatency(i) refers to the average latency experienced by operation i during profiling.

Our profile framework is able to capture the latencies, hit/miss quantities, and hit/miss

ratios for individual load operations. The average latency gives a more realistic latency

experienced by the load than the optimistic or pessimistic latency.

2. predLatency(i) for operation i refers to the maximum avgLatency(j), where j ∈

preds(i). If i is dependent on longer latency operations then its priority should be

decreased to allow the scheduling of operations that depend on operations with lower

latencies.

Profiling is used to determine the appropriate latencies, and was one of central points of

our method.

5.1.1 Results

The results are based on comparison with traditional critical path schedulers that used and

did not use profiling as well as some other variants. This section summarizes the results.

The data in the table above summarizes our results for the most commonly used metrics

for this area of research. We also developed other metrics:

1. Closeness to etime(i): Captures how early operations are being scheduled relative to

the earliest possible schedule time. The earliest possible schedule time is constrained

by data dependences, as well as block and branch boundaries. This metric approaches

0 for schedulers that are producing compact schedules (i.e. optimistic schedulers).

2. ILP Efficiency: Measures how the amount of ILP being extracted by the scheduler

during the execution of load operations. It is a ratio of actual ILP to the available ILP

given an infinite resource machine.

12

Benchmark % Com-

pute Cycle

Reduction

% Stall Cy-

cle Reduc-

tion

DARPA

DIS Bench-

marks

18.18% 44.48%

Olden

Benchmarks

6.35% 5.17%

Spec2000

Benchmarks

5.88% 6.46%

Table 1: Average percentage reductions in execution and stall cycles experienced by CSS in

relation to the baseline scheduler over all selected benchmarks from a given suite.

The results of these metrics are shown in the following tables and graphs:

Table 2 contains the data for the E-Time Closeness metric. This metric was developed to

determine whether or not load operations were being scheduled as early as possible. If load

operations are being scheduled as early as possible then they cannot be scheduled earlier

due to data dependences, block and branch boundaries, or resource constraints. The exact

nature is beyond the scope of this paper. As values approach 0, then it can be concluded

that operations are being scheduled as early as possible without violating any of the above

constraints. In comparing CPFS and CSS, it is apparent that both schedulers schedule

instructions very close to the e-time. If it were the case that CPFS was scheduling operations

further from their e-time, then it could be argued that if CPFS simply scheduled operations

earlier within the slack time, then it would compete with CSS. However, the data suggest

that the operations need to be reordered in a way to balance the masking of load latencies

and ILP.

The graphs in figures 3 and 4 compare the ILP Efficiency of CPFS and CSS for each

of the benchmark suites. The y-axis is the quantity of load operations, and the y-axis is

13

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

10

20

30

40

50

60

ILP Efficiency

N
um

be
r

of
 L

oa
ds

Figure 3: Compares the CPFS algorithm(light) with the CSS algorithm(dark)

14

0.0 0.2 0.4 0.6 0.8
0

50

100

150

200

250

ILP Efficiency

N
um

be
r

of
 L

oa
ds

Figure 4: ILP Efficiency for DIS

15

Benchmark E-

time-

Closeness

(CPFS)

E-

time-

Closeness

(CSS)

Difference

(# of

cycles)

Data Management 1.11 1.56 0.45

Matrix 0.62 0.88 0.26

Update 0.61 0.7 0.09

Neighborhood 1.52 1.75 0.23

Bisort 0.18 0.18 0

Health 0.09 0.14 0.05

Mst 0.09 0.14 0.05

Perimeter 0.09 0.14 0.05

Treeadd 0.09 0.14 0.05

Table 2: This table summarizes etime(i) closeness metric to determine if load operations are

being scheduled as early as possible within data dependence, block/branch boundaries, and

resource constraints

the percentage of functional units used by the schedule while load operations are executing.

The trend in all of the benchmark suites is that CSS is able to extract more ILP on average

during the execution of load operations. Overall there is an average of 11.5% improvement.

5.1.2 Lessons Learned

The work presented here showed that there were opportunities for scheduling instructions in

a cache sensitive manner. However, the results indicate that these optimizations should be

coupled with other locality optimizations to see the true benefit. Future work in this area

should attempt to take advantage of programmable cache features that enable the compiler to

have more control over the cache behavior, as well as eliminating the reliance on profile-data.

16

Another area would be to have a compilation/simulation environment that can not only

handle other optimizations, but have an array of scheduling options as well. This will allow

a more comprehensive comparision of the optimizations.

We feel that the future of this area of research will be in the ability to analytically deter-

mine program behavior vs profiling, the ability to reduce energy dissipation via scheduling,

and analyses that allow you to study the effects of various optimizations on the performance

goals.

A more complete description of this work can be found in [3].

6 Data remapping and speculative execution for im-

proved cache performance

This section gives an overview of the results of the ASC3 effort to improve the performance

of data intensive programs via data remapping and speculative execution.

6.1 Ameliorating the Memory Bottleneck by Speculative Execu-

tion: The Load Dependence Graph

The effective use of the memory hierarchy is crucial for achieving good performance in

all modern processors. In many applications, however, a very small number of delinquent

memory operations are responsible for the bulk of the cache misses incurred by an application.

As part of the ASC3 effort, we developed an innovative, lightweight, and effective compiler

framework that deals with delinquent loads by leveraging architectural features that exist

in the class of Explicitly Parallel Instruction Computing (EPIC) processors – of which the

Intel Itanium is an important representative.

We developed at compile-time program representation called the Load Dependence Graph,

and showed how we can effectively make use of it to insert prefetching code in an application

such that (i) the prefetch is highly precise, (ii) the technique is applicable to both numerical

17

and pointer-intensive applications, (iii) we require no new hardware support, and (iv) the

overhead is negligible. Our results showed that when implemented in the Trimaran EPIC

research infrastructure, we achieve a speedup of 26% on average. Experiments conducted

on an Itanium processor demonstrate a 11.67% reduction in total execution time. Similar

experiments performed on an Itanium II processor showed an average performance reduction

of 7.14%. Our application test bed was drawn from the well-known Olden and SPEC2000

suites of integer and floating point benchmarks.

The full details of this work can found in [4].

6.2 Data Remapping for Design Space Optimization of Embedded

Memory Systems

As part of the ASC3 effort, we developed a novel linear time algorithm for data remapping

that is (i) lightweight,(ii) fully automated and (iii) applicable in the context of pointer-

centric programming languages with dynamic memory allocation support. All prior work

in this area lacked one or more of these features. We demonstrated a novel application

of this algorithm as a key step in optimizing the design on an embedded memory system.

Specifically, we show that by virtue of locality enhancements via data remapping, we can

reduce the memory subsystem needs of an application by up to 50%, and hence concomitantly

reduce the associated costs in terms of size, power, and dollar-investment (by up to 61%).

Such a reduction overcomes key hurdles in designing high performance embedded computing

solutions.

Memory subsystems are very desirable from a performance standpoint, but their costs

have often limited their use in embedded systems. Thus, our innovative approach offers the

intriguing possibility of compilers playing a significant role in exploring and optimizing the

design space of a memory subsystem for an embedded design. To this end and in order

to properly leverage the improvements afforded by a compiler optimization, we identified a

range of measures for quantifying the cost-impact of popular notions of locality, prefetching,

regularity of memory access and others. The proposed methodology will become increasingly

18

important, especially as the needs for application specific embedded architectures become

prevalent.

In addition, we demonstrated the wide applicability of data remapping using several ex-

isting microprocessors, such as the Pentium and UltraSparc. We showed that remapping

can achieve a performance improvement of 20% on the average. Similarly, for a parametric

research HPL-PD microprocessor, which characterizes the new Itanium machines, we achieve

a performance improvement of 28% on average. All of our results were achieved using appli-

cations from the DIS, Olden and SPEC2000 suites of integer and floating-point benchmarks.

A full description of this work can be found in [5].

7 Aliasing-Tolerant Compiler optimizations

As part of the ASC3 project, we initiated a research effort aimed at developing, refining, and

validating compiler techniques for utilizing the novel hardware of emerging architectures to

maintain the effectiveness of compiler optimizations despite the presence of unanalyzable

memory aliasing. Of interest to us is the kind of aliasing for which static analyses have been

ineffective and generally cause the compiler to abandon optimizations that would otherwise

be effective. We refer to such aliases as dynamic aliases, to reflect both the fact that static

analysis techniques are ineffective for such aliasing and the fact that the aliasing properties

may change over the lifetime of the program.

The hardware features that we believe to be particularly useful are those — such as dy-

namic memory disambiguation, predication, and support for speculative execution — that

are being included in new processors such as those of the EPIC class of architectures exem-

plified by the Intel IA-64. The optimizations that we hope to be able to preserve range from

the classical optimizations — CSE, loop invariant code motion, dead code elimination, etc.

— to more recent techniques such as software pipelining, vectorization and parallelization,

and advanced instruction scheduling and register allocation.

The ASC3 work in this area proceeded as follows:

19

1. We identified compiler optimizations that are particularly sensitive to aliasing. Such

optimizations were drawn from the classical optimization literature as well as from

more recent work.

2. We developed techniques for adapting some of these optimizations to exploit novel

hardware features so that their effectiveness is retained despite dynamic aliasing. As

a legacy of the ASC3 effort, we are continuing to develop techniques to important

optimizations tolerant to aliasing.

3. We implemented several of these new techniques, followed by experimentation to quan-

tify their effectiveness on a wide range of programs.

Our main result in this area, completed during the ASC3 effort, was the development of

a technique called called Software Bubbling. It is described below.

7.1 Software Bubbles: Using Predication to Compensate for Alias-

ing in Software Pipelines

Software bubbling is a technique for supporting software pipelining in the presence of dy-

namic aliasing. It is particularly useful for EPIC architectures, such as Intel’s IA-64 and HP

Laboratories’ HPL-PD, that support both instruction-level parallelism and predication.

Software pipelining is a technique, commonly used in modern optimizing, for exploiting

parallelism in loops by overlapping (in time) the execution of the iterations of the loop.

Software pipelining and other methods for parallelizing loops rely on the compiler’s ability

to find loop-carried dependences between iterations. Often the presence or absence of these

dependences cannot be determined statically, due to aliasing.

The idea behind software bubbling is that the compiler, when encountering a loop that

could not be pipelined due to aliasing, generates a single version of the pipeline that is

constrained only by the static dependences and resource constraints known to the compiler.

The operations within the pipelined loop, however, are predicated in such a way that if

dynamic dependences arise, the predicate registers are set in a regular but rotating pattern

20

that causes some of the kernel operations to be disabled each time the kernel is executed.

With this disabling of operations, the effective overlap of the iterations in the pipeline is

reduced sufficiently to satisfy the dynamic dependences. We refer to the disabled operations

as software bubbles, drawing an anology with bubbles in processor pipelines. Experiments

using the SPEC95 Alvinn benchmark and the Livermore Loops Kernel2 benchmark demon-

strated performance improvements of 40% on each benchmark and 80% on the specific loops

to which software bubbling was applied.

The details of the software bubbling work were published in [2].

8 Randomized Techniques for Memory Bandwidth Op-

timization

Work pursued under subcontract at Harvard focussed on the key idea of using probabilisitc

or randomixed sampling to help ameliorate the memory bottleneck challenge. Based on this

idea, the Harvard team abstracted and demonstrated that for the k nearest vector problem

which involves, given a fixed vector with integer entries, finding its k nearest “neighbors” in a

well-defined metric space, hihgly bandwidth efficient randmozied algorithms are possible. By

interpreting the entries in these vectors as denoting features, the notion of distance has been

shown to be useful in finding good matches in such domains as face recognition, fingerprting

matching and other such very practical methods. Preliminary software implementations

have been completed and the investigators are currently developing a hardware prototype

to validate the efficacy of these ideas in a real-time patter matching setting. The main

concept that this work demonstranted is to show that the randomized approach can yield

and exponential improvement to the bandwidth requirements while yielding a match with

very high (exponential) probability. Details can be found in [1].

21

References

[1] Carl Bosley and Michael O. Rabin. Selecting closest vectors through randomization.

Technical Report TR-01-00, Computer Science Group Harvard University, 2000.

[2] B. Golderg, E. Crutcher, C. Huneycutt, and K. Palem. Software bubbles: Using predi-

cation to compensate for aliasing in software pipelines. In Proceedings of the 2002 Sym-

posium on Parallel Architectures and Compilation Techniques (PACT’02), September

2002.

[3] C. Hardnett, R. Rabbah, K. Palem, , and W-F. Wong. Cache sensitive instruction

scheduling. Technical Report GIT-CC-02-18, Georgia Institute of Technology, 2002.

[4] R. Rabbah, M. Ekpanyapong, and W-F. Wong. Ameliorating the memory bottleneck

by speculative execution: The load dependence graph. Technical Report GIT-CC-02-57,

Georgia Institute of Technology, November 2002.

[5] R. Rabbah and K. Palem. Data remapping for design space optimization of embedded

memory systems. ACM Transactions in Embedded Computing Systems, 2(2), May 2003.

22

